
Impasse-Driven Tutoring for Reactive Skill.
Acquisition

Randall W. Hill, Jr. W. hwis Johnson
Jet Propulsion Laboratory Information Sciencm Institute

California Institute of Technology University of Southern California
4800 Oak Grove Drive, M/S 525-3631 4676 Admiralty Way

Pasadena, CA 91109, USA Marina del Rey, CA 90292, USA
hill@gobi.jpl.nasa. gov johnson@isi.edu

1. Introduction

We are interested in developing effective performance-oriented training for the operation of systems
that are used for monitor and control purposes. We have focused on one such system, the communications
Link Monitor and Control (LMC) system used in NASA’s Deep Space Network (DSN), which is a
world wide system, for navigating, tracking and communicating with unmanned interplanetary space-
craft. The tasks in this domain are procedural in nature and require reactive, goal-oriented skills; we
have previously described a cognitive model for problem solving that accounts for both novice and ex-
pert levels of behavior as well as how skill is acquired [Hill and Johnson, 1993]. Our cognitive model-
ing work in this task domain led us to make a number of predictions about tutoring that have influenced
the design of the system described in this paper,

Tutoring in our training system is impusse-drivm. Unlike other tutoring techniques such as modei true-
ing and plan recognition, which decide to intervene on the basis of understanding every student action,
our approach depends instead on impasse recognition to drive the tutoring intervention. When the tutor
recognizxx that the student has reached a procedural impasse, it intervenes with advice that it gener-
ates with its expert cognitive model, which is used to understand and resolve the current impasse in
situ.

I“he tutor uses a method called sifuakd plan attribution to recognize and explicate students’ procedural
impasses in the LMC task domain. We use the term plan atfribufion instead of plan reco.gnifion because
it does not assume that the problem solver’s actions are controlled by plans. Rather, we take the situ-
ated action view of plans: plans are resources that guide and orient action, and actions are ultimately
contingent on the state of the world [Suchman, 1987].

The tutor recognizes potential impasse situations by using a number of different resources. Plans are at-
tributed to the student based on a description of the task. The attributti plans, in turn, generate expec-
tations about the student’s actions and goals. Each action is evaluated with respect to the student’s at-
tributed plans, its actual effects on the training device and the goals associated with these plans.
Impasses related to specific actions are often indicated by feedback from the device simulator, e.g., a
command is rejected or a warning is given. This type of impasse is easy to detect, both for the student
and the tutor, though it is not always easy to resolve. Other impasses, are not as obvious, since the stu-
dent’s action may result from a misconception about a plan or goal rather than violating a constraint of
the system, and the error may not manifest itself for some time. For instance, the student may complete
a procedure without achieving it’s goals or take an action that is not relevant to the current task. The
tutor recognizes this type of error as a polentiai impasse since the device itself may not show any sign of
malfunctioning and the student may be unaware of a problem until a much later stage in the task. When
the tutor detects a potential impasse it intervenes, thereby forcing the impasse in order to resolve the
misconception near the point at which it showed itself.

We have implemented our tutor in Soar [1.aird et al., 1987], an integrated problem solving and learning
architecture. Our tutor uses the Soar chunking mechanism to learn and is thus often able to recognize an

impasse and its resolution in the task context without searching through a wt of problem spaces to re-
derivc a solution.

2. Task Domain: Monitor and Control Systems

Monitor and control systems are ubiquitous in our increasingly automated society: power plants, facto-
ries, environmental control systems and operations centers all use computers to control other machines
and to monitor their status and health. Typically only a portion of the work to be done in the problem
domain is automatwi by the monitor and control system, leaving tasks requiring judgment and special-
ized knowledge to a human Operator. 1 In this paper we describe an approach to training Operators
that has been developed for tasks in one such domain, namely, the communications Link Monitor and
Control (LMC) system used in NASA’s Deep Space Network.

The DSN is a worldwide system for navigatin~ tracking and communicating with all of NASA’s un-
manned interplanetary spacecraft. As the name suggests, the LMC system is used by operations permn-
nel to monitor and control a DSN communications link during an interaction with a spacecraft. A corn-
munications link is fomwd by assigning a collection of equipment to an LMC system for a particular mis-
sion; the link typically includes a large antenna dish (34 or 70 meters in diameter), its electromechani-
cal controllers and subsystems, a receiver/exciter, a digital spectral proceswr (DSP), a precision power
monitor (PPM), a hydrogen maser, frequency and timing subsystem (FTS), phase calibration generators,
digital tone extractor (DTE), and numerous other devices.

Mlsslon:
w

1

Plan8: Configure-DSP Acquire-Data ● ● ●

I
I

Commands: Load-Prodlcts I Set-SAT-Value
1

.** Select. Rwcwder

Figure 1 The VLBI task with a representative set of plans and operators

The tasks performed by LMC Operators involve configuring and calibrating the communications link, test-
ing the configuration for coherency, acquiring data from the spacecraft and playing back the data to the
network operations control center. Each mission consists of a number of other similar tasks, and the way
to perform each task is described by a procedure2 manual, which provides the Operator with command
sequences for each of the various subsystems. Figure 1 shows a portion of the task hierarchy for a VLB13
mission. Note that the figure shows three basic levels in the hierarchy: mission, plan, and command.
What Figure 1 does not convey is that the order in which the plans and commands are executed is not
completely specified; though some partial orderings exist among plans and commands, there is a lot of
room for variability from one mission to the next (or from the way one Operator performs the tasks to the
next.)

To accomplish a VLBI mission, the Operator performs the plans that are shown in Figure 1: Configure-
DSP, Coherence-Test, and w on. The Configure-DSP plan has operators4 to load the mission-spcxific pre-

1 Tho term @ratOr Will b. “Wd tWo different ways in this pa~r. To cfisarnbiguate ~s Usage, WO capitalize @W~(OC

whcm referring to a human being, and we use lower caso to refer to a Soar operator.
2 Henceforth we refer to these written procedures as plans.
3 VLBI stands for Very Long Baseline lnterferometry.
4 An Owrator Wflh a small . . . denotes a f“nct~n that is sel~ted and appli~ to a state to get a rfMUh. This iS ifl

keeping with the Soar notion of an operator [Laird et al., 1987].

diction data file (Load-I’redicts), set the attenuation values on the Intermediate Frequency Video Down
Converter (set-SAT-Values), and select a recording device to capture the mission data (Select-
Recorder). Applying an operator involves issuing a command (e.g. the Load-Predicts directive is NLOAD
predicts- f i le) .

It would appear that the tasks in the LMC domain are straightforward and would require little or no
training - just follow the plans given in the mission procedure manuals. We have found, however, that
this is not the approach taken by domain experts. Through extensive interviews with expert operators
and system engineers, we determined that the proctdure manuals only provide a subset of the knowledge
needed to sucmwsfully perform the tasks associated with a mission. What is generally lacking in the pro-
cedure manuals is a complete description of the required device state conditions before and after a com-
mand is issued. Expert Operators possess a knowledge of the preconditions and postconditions for each
command and verify these conditions are satisfied before and after issuing the commands. Operators who
lack this knowledge may find it difficult to complete even simple plans, since the commands may be re-
jected, or worw, they may put the device into an incorrect state for the current plan or mission. For exam-
ple, one of the preconditions for the Load-Predicts operator is that the predicts-file being loaded must be
present on the system. If the Load-Predicts command is issued for the predicts-file named “JK” (i.e., the
Operator issues NLOAD JK), it will be rejected if a file by that name is not present in the predicts file di-
rectory.

To complicate matters, during a two hour mission an Operator may interact with five rnapr subsystems,
comprised of fifty different devices, for which more than 250 unique attributes must be monitored and
500 event notice messages processed. The sheer quantity of monitor data accentuates the difficulty of
executing the control procedures. Unexpected devim state changes, device failures, and the slow reac-
tion time of certain devices can cause procedural impasse and Operator confusion. If a command is is-
sued when one of its preconditions is not satisfied, then it is likely to be rejected, or worse, it puts the
device into an undesirable state. When Operators observe that a precondition is not satisfied, they
have to know how to react. Consequently, procedurallydefined command sequences are not sufficient to
accomplish most task goals. The plan acts as a guideline, but the Operator must bring other knowledge
to bear on the performance of a task.

3. Domain Problem Solving: Implications for Plan Recognition

In this section wc begin to motivate our approach to tutoring by first describing the nature of problem
solving and skill acquisition in the LMC domain. In order to better understand the nature of these skills
we implemented a detailed cognitive model that accounts for the behavior of both novice and expert
LMC Operators. Developed in Soar, a problem solving architecture with a learning capability [Laird
et al., 1987], the model enabled us to make a number of predictions about how Operators acquire knowl-
edge and skill in this domain; it improves its behavior over time, acquires new knowledge and is able
to recover from incorrect knowledge [Hill and Johnson, 19931. We describe how these predictions about
skill acquisition affected the design of our intelligent tutor. Ultimately, we desired to capitalize on
the insights gained from the cognitive model, so we start by revisiting some of the key issues raised by
the cognitive model that motivated our approach to tutoring using sifwfcd plan aftribufion.

3.1 l’lan Execution and Situated Action

Problem solving in the LMC domain involves both plan execution and situated action. By plan execution
we mean that Operators issue commands according to a written procedure. Actions are situated, on the
other hand, in that the context in which commands are issued must be taken into account, resulting in
behavior that does not always resemble the original plan. A plan may specify a command to be exe-
cuted, but the situation may warrant taking a different action in order to achieve the underlying goals
of the plan or task. 1’o illustrate the effect of the device situation on the Operator’s actions, consider
the case where there are two plans that need to be exccutcd as a part of the VLIII task: first the
Configure-DSP plan and then the Coherence-Test plan. The tables in Figure 2 show the default com-
mand sequences for these two plans, where the operators are shown in the left column and the corrc-

sponcling commands are shown in the right column. The Utility Commands table contains commands
that are not typically used in any particular plan, but arc useful for changing a device’s state.

Configure-DSP Coherence-Test

Operator I Command Operator I Command
— -.

;en I V NPCG 4>

Sot-X-Att~nuation I V XAT dab
V N I VV <S>d>

Select-Rcmordor I V NRMED <nrmed>
set-offset I V OFST -cofst>
Legend:
V . Subsystem ID, c-. parameter variable

Phas&Gallbratlon-G
Run-NCB-Program I VN!?IIN.W2%. J

Run-FFT-Program j V NFFT .@>
n. ...-, *-–. r --------- \) .In-rc - ..’ I(Jmnal- I one-~ xuar-xor I VINUIKCV4> 1

(Jtilitv C%mmands I

Operator j Command

~dl&NCB-Program 1 V NIDLE REC 1

Figure 2 Plan Descriptions for Configuro-DSP and Coherence-Test . A utility command is also shown
that is not associated with a particular plan.

> V NLOAD JK
> COMPLETED. LOADING NCB PREDICTS . . .
>VSAT25
> COMPLETED. S-BAND ATFENUTATION-25 DB
>VXAT20
> COMPLETED. X-BAND ATFENUATtON-20DB
> V NTOP 17.319.4
> COMPLETED. SYSTEM TEMP: S 17.3 X 19.4
> V NRMED t_DO
> COMPLETED. NRMED: LOO
>VNPCG MAN
> COMPLETED. NPCG MODE: MANUAL
> V NRUN COLD
> COMPLETED. NCB MODE: NPJJN
>VNFFFE
> . . .

—.
Case 1: Two errors: (1) wrong SAI’ value
(should bc 30 instc.ad of 25) and (2) missing tk
OFST command.

> V NLOAD MK
> REJECTED. NOT ALLOWED IN NRUN MODE
> V NIDLE REC
> COMPLETED. NIDLE REC lNITfATED
> V NLOAD MK

> REJECTED. INVALID SET NAME
> . . . !
Case 2: Multiple constraint errors.

; 60 MPLEl ED. NIDLE RE C I N I T I A T E D

> V NLOAD JK
> COMPLETED. LOADING NCB PREDICTS
> V SAT 30
> COMPLETED. S-BAND ATTENUTATION-30 DB

Case 5: AvoKtmg the L’asc z errors.

Figure 3 Operator Logs: Examples of Errors and Situated Action

Fiswre 3 movides three different traces of an Operator executing these plans. The traces show the com-<, .
mands in the sequence they were issued by the Operator, where ~ach co&nand is followed by a message
from the device telling whether the command was accepted or rejected.5 Case 1 contains two typical
novice errors that could easily go undetected. The first error was that the Operator mis-parameterizmf
the SAT command with a value of 25 instead of 30. Normally the Operator would obtain the SAT
value from a calibration table that contains this information for each antenna system, so the error may
have been due to rnis-reading the table. The second error was the omission of the OFST command,
which is the last step of the Configure-DS]’ plan; this mistake will not manifest itself to the
Operator, rather, it will affect the data correlation later, after the mission is complete.

Case 2 illustrates two examples of how the device simulator responds to constraint violations associ-
ated with the NLOAD command. We see that after NLOAD was rejected the first time the Operator
recognized the nature of the problcm and corrected it with the NIDLI? REC command. But when

-.. —..
S1-ho COMpLETED reswn5e moans that th~ ~m~and was ~ept~d by the device, b~ ~ do~s not imp/y that tha
intended act”~n was successful. The REJECTED response means that the device will not attempt to execute the
command because it violates a system constraint.

. . ~

NLOAD was rc-issued, it was again rejected due to the fact that the predict set specified by the
NLOAD parameter, MK, did not exist.

Case 3 shows how a skilled Operator responds to the same situation as Case 2. Instead of rotely follow-
ing the Configure-DSP plan, the Operator recognized that the situation called for issuing the NIDLE
REC command first, and then the NLOAD JK command.

3.2 Cognitive Model

These three cases show the typical situatiorw faced by LMC Operators, where it is not possible or feasi-
ble to just execute the plans described by the procedure manuals. Our Soar-based cognitive model was
developed to learn how to handle situations of this type, where it executes the known plans until it rec-
ognizes that the situation requires a different action than the prescribed one, In cases where its actions
failed, it learned from the failure and acquired new knowledge to help it avoid the same error in the
future, I%e details of how the cognitive model performed are described in [Hill and Johnson, 1993], and
in the following paragraphs we summarize the conclusions from that effort that had an influence on the
design of the tutor described in this paper.

(1) km by doing. Though this is not a new insight in the field of education, it is one that is
strongly supported by the cognitive model and is a direct result of the way that the Soar chunking
mechanism works [Newell, 1990]. This result agrees with Anderson’s account of proceduralization and
skill acquisition [Anderson, 1983]. It is not sufficient to acquire declarative knowledge about a task,
rather, knowledge must be brought directly to bear on solving problems. Our cognitive model’s task per-
formance improves only as it compiles its knowledge about how to perform the domain task. As a conse-
quence of this result, we have designed our training system to maximize the Operator’s cxpcricncc in
performing the target task skills; the Operator performs tasks on a Link Monitor and Control system
simulator and the tutor strategically intervenes in a manner that will be described later.

NCf3-Program Device
Attribute I Value
MODE i RUN

1 VLRI Predicts Set Device 1
‘ Attribute I Value

., A,ir- 1 ,,/ 1
t
fW\MC 1 dn

RECEIVED? I YES I
6UALI+Y? I OK I

Figure 4 Partial Set of Devices and their Attributes

Operator I Command j Procondi~ion MAm~ 1 ~nvica] Attrih(jto I Vallha 1
Load-Predicts] V NLOAD <id> Load-Predicts-PCl NCB-PROG~M WE I IDLE

Load-Predicts-PC2 VLBI-PREDICTS F{ ECEIVED? I YES
Load-Predicts-PC3 VLEII-PREDICTS (3[IAI ITV I OK 1

Figure 5 Preconditions for Load-Predicts Operator

(2) Expert problem solvers do not rofely execute plans. Rather, they evaluate the appropriateness
of executing each command in the plan with respect to the device situation, and they issue a command
only when all of its preconditions arc met. Moreover, expert problcm solvers recognize when it is neces-
sary to reactively plan in order to overcome unsatisfied command preconditions. To illustrate these
points, consider the device model in Figure 4, which reflects the state of the NCB-progran~ and VLBI
I%cdicts Set devices at the time that the Operator performed the actions shown in Figure 3. ‘I’he state
of a device is represented with a set of attribute-value pairs. In this case, the NCB-Program device’s
MODE attribute has a RUN value, and the VI,BI Predicts Set is named JK, has been rcceivcd and its
quality is acceptable.

The Load-Predicts operator in Figure 5 has three preconditions, of which only two are satisfied with
respect to the current devim situation. The l.-oad-I’redicts-PCl precondition is not satisfied since it re-

quires the NCB-I%ogram to be in the IDLE mode rather than the RUN mode. According to our cognitive
model, an expert Operator will notice that this precondition is unsatisfied and will act to correct the si-
tuation, as we observe in Case 3, by issuing the NII ILE REC command to put the NCB-I’rogram into the
IDLE mode.

(3) Novices acquire skill by learning operator preconditions. In addition to describing expert
behavior, our cognitive model also accounts for novice behavior and the process by which skill is ac-
quired. It predicts that a novice Operator who does not know about a precondition that is unsatisfied
will make the errors shown in Case 2, issuing the command in the wrong situation, resulting in a rejec-
tion. In our cognitive model, the novice acquires skill by recognizing there was an error (i.e., the rejec-
tion notice), understanding the meaning of the rejection message, searching for and applying an opera-
tor to repair the situation, and adding the newly acquired precondition to its knowledge; these steps
correspond to the goals that a student would have in trying to recover from an error or an impasse, and
they are also opportunities for a tutor to give assistance. In addition to making errors due to missing
preconditiorw, our model also addresses the situation where the Operator has a misconception about a
precondition and needs to learn the correct knowledge.

(4) Lemwing occurs in ivfpasse sifuafions. The cognitive model performs the task until it reaches
a point where it needs additional knowledge to cope with the situation. It acquires knowledge al, the
impasse point from an artificial tutor, which provides information about the missing or incorrect opera-
tor precondition. These impasse points were a natural place to tutor the novice with the needed situa-
tional knowledge since the Soar chunking mechanism could immediately transform the declarative tu-
toring knowledge into procedural knowledge. In addition to the instruction about preconditions, the tu-
tor also gave the novice corrective steps for resolving the impasse.

(5) Learning occurs in a goal contcrf. This observation is related to the previous one and it influ-
ences the decision to tutor at the impasse point rather than before or after the training session. ‘Ile
Soar chunking mechanism works by summarizing the results of a subgoal in new operators that can be
applied under similar circumstances to obtain the same results without needing to search the subgoal
problem space again. All learning in the Soar architecture occurs in a goal context and the contents of
what is learned also depends on the goal context. The= observations led us to predict that the most ef-
fective way of tutoring human students is to intervene in the right goal context, that is, when the stu-
dent has the goal to resolve an impasse. The challenge for the tutor is to recognim when the student is
at an impasse point and then provide the appropriate instruction for resolving the impasse.

(6) Sovle knowledge gaps are hidden. If the student only learns about preconditions by violating
them and reaching an impasse, then some preconditions may not be learned, The action sequence order
may eliminate the need to verify that a precondition is satisfied since the results of one action satisfy
the preconditions of the next; as long as the actions are always executed in the same order the precondi-
tion will be satisfied and the precondition will remain hidden in the sense that problem solver will not
act to verify that it is satisfied. It is sometimes difficult to create device situations that will force the
student into a failure impasse for certain preconditions, nevertheless the tutor needs to detect hidden
knowledge gaps, perhaps by forcing the student out of a rote action sequence and into situations where
the actions are executed in a different order.

3.3 The Tutoring Intervention Problem

We draw two conclusions about tutoring in the LMC domain from the preceding results. First, the model
indicates that impasse situations are strategic opportunities for learning. In [Hill and Johnson, 19931 we
describe how our cognitive model acquires new knowledge while searching for operators to resolve the
impasse. The key to learning in the model was to provide the pertinent information to resolve the im-
passe when the student was in a problem space that could make use of it, The implication of these ob-
servations is that tutors must be capble of recognizing when the student has committed an error or po-
tential error in order to intervene effectively. ‘I”his conclusion is supported by [Galdcs, 1990], which

..!.

provides evidence that human tutors intervene during performance-oriented training only after they
have identified definite or potential errors.

The second conclusion from our modeling work is t}aat once the tutor chooses to intervene, it must situate
its explanation with respect to the circumstances that created the impasse. The tutor must be able to
apply its expert cognitive model at the impasse point, and it must do it in a way that will generate a
situation-specific explanation of the impasse as well as a means oi resolving it. We call these two is-
sues the tutoring inferueniion probhn, and the approach we dcscritw in the next sccti,on attempts to ad-
dress this problem as it pertains to reactive problem solving domains.

4. Situated Plan Attribution

Our approach to addressing the tutoring intervention problem is based on a method we call situated
plan affribufion. We describe in detail how this method is used by our tutor, which is integrated with
an LMC system simulator. This section, which is organized into three parts, makes the following
points it (1) prwents some assumptions about plans and actions and how they influenced our decision to
use impasse recognition to drive the tutoring intervention; (2) describes how situated plan attribution
creates expectations about behavior and provides a context for intervention; and (3) describes how the
tutor recognizes impasses.

4.1 Assumptions about Plans and Action

Our approach to tutoring makes a key assumption: plans do not determine behavior [Suchman, 1987]. As
we have shown in our cognitive modeling work, plans influence behavior, but they act primarily as a
resource to help guide the performance of the task. Consequently, plans are useful for creating expecta-
tions about behavior, but they cannot always & used to understand and explain it. For instance, some si-
tuations call for reactive plannina resulting in actions that, when observed by a tutor, do not fit into the
default plan. The tutor needs to be able to recognize whether the student’s actions are appropriate in
these situations, but it may be very difficult to do so if the action has to be recognimd and explained in
terms of a known plan. A strict plan recognition approach to understanding situated behavior WOUIC1 re-
quire a library of all plans for all situations.

For the link monitor and control domain, wc have a complete set of default plans for performing a n~is-
sion, but wc believe it would be impractical to represent all of the variations of the plans that would be
needed to account for situational differences that arise from the dynamic nature of the problcm domain.
For instance, in the situation that was described for Cases 1-3 in Figure 3, a variation of the Configure-
DSI’ plan would have to include the NIDLE REC command to cover the situations where the Load-
I’rcdicts-PCl precondition (Figure 5) is not satisfied. The same would hold true for every precondition
of every operator in the plan: the situation could potentially force the Operator to deviate from the
standard plan every time a precondition was not satisfied, meaning that there would potentially have
to be a plan variant for each such situation.

This viewpoint led us to view plans as a way of providing only partial understanding of the student’s
behavior; more specifically, plans provide a framework for recognizing when the student has reached a
potential impasse, Since impasses may result from a combination of student rnisconccptions and anonm-
10US device states, wc seek to understand the impasse using an attributed plan as a starting point, but not
as the only means of undcrs.tanding student behavior. Besides plans, the tutor also has access to several
other resources for interpreting student behavior: it sees the state of the devices (i.e., situation in
which the action is taken), it tracks the state of the goals associated with the attributed plans, and it
sees the student’s actions and the device’s response to them. This approach shifts the computational
burden away from giving a plan-based account of a student’s behavior and toward using plans as one of
several resources for the task of recognizing and explaining an impasse. Plans are a convenient way of
organizing knowledge about goals and actions related to the task; they are a declarative description of
how to perform the task as opposed to being an executable model, and they arc n~ant to orient the tutor

rather than giving a complete account of how to behave in the current situation, which is consistent
with Suchman’s view of plans and situated action.

An additional resource for detecting certain types of impasses is the simulator itself, The simulator re-
jects dimctives6 whenever they violate a system-imposed mnstraint? Directive rejections are cues used
by the tutor in deciding whether to intervene: they eliminate the need to guess whether there is an im-
passe in these instances. Instead, the tutor ordy has to note that the directive was rejected and then de-
termine the causes for the impasse and resolve it. This eliminates the need to understand every student
action, which is normally a requirement for both plan recognition and model tracing approaches to tu-
toring.

4.2 Situated Plan Attribution

The primary purpose of situated plan attribution is to generate expectations about Operator behavior.
These expectations guide the impasse recognition process as well as the tutorial intervention. We begin
by describing how plans are represented and used for generating expectations and rmognizing impasses.

For each task there is a set of plans, each of which is based on a written procedure, that will accom-
plish the goals of the task. Examples of two plans are shown in Figure 2. A partial order among the
plans for a mission is represented in a structure called a Temporal Dependency Network (TDN) [Fayyad
and Cooper, 1992; Hill and Lee, 1992]. The goal of the TDN is to express an order among the plans that
maximims the concurrency of plan execution. A portion of the VLBI TDN is shown below in Figure 7.
Note that the plans, Configure-Precision-I’ower-Monitor and Configure-Receiver-Exciter, can & exe-
cuted concurrently, while Configure-DSP is executed only after these two have both been completed. If
two plans can be executed concurrently, it means that their commands may be interleaved in the com-
mand sequemm without harmful interaction. Plans that have dependencies are placed in succession to
one another using the Before and After relations shown in Figure 7.

Configure-Receiver/Excitw

Configure-DSP n

Conf lgure-Precision-Power-Monitor

Figure 7 Partial Temporal Dependency Network for VLBI Task

The TDN resembles a procedure net: from’ a task perspective it describes a class of plans that would
theoretically achieve the task goals. But unlike the procedure net approach to tutoring [Chen et al.,
1991; Rickel, 1988; Warriner, 1990], we do not use the TDN as the sole basis for deciding when to inter-
vene and provide tutoring. one difference is the granularity of the descriptions: the TDN specifies the
relationship among plans, while the procedure net focuses on the relationships and constraints at the
action level. We also loosen the procedure net assumption that actions are plan-based. Whereas the
procedure net provides an action grammar for deciding on whether an action is appropriate or not, we
use the TDN description to orient the impasse recognition process, which is described in the next sec-
tion.

Given a mission, the tutor uses the mission’s TDN to determine which plans are eligible for execution.
I“hese plans, known as acfive phms are the ones that we expect the Operator to be executing. As previ-
ously mentioned, multiple plans may be concurrently active, and we expect the Operator to interleave
actions from different active plans while performing the various mission tasks. The tutor adds a plan
to the active plan set when the plan’s predecessors are satisfied and completed. Likewise, when a plan
has been evaluated as satisfied and completed, the plan is removed from the active set and placwi in

6 Directives are synonymous with commands.
7 The simulator is faithfui to the a~uai link mon~or and ~ntroi system in the way that it a~epts or rejects directives.

the inactive set. Once a plan is placed in the active set, it creates expectations not only about what ac-
tions will be taken but also which goals will be active. The tutor marks successfully completed actions
on the plan, and when all of the expected actions have been observed, the plan is marked “completed”.
A completed plan is not removed from the active set, however, unless its goals are akw satisfied.

The plan’s goals, like its actions, are continually monitored by the tutor, beginning at the time that the
plan is placed in the active set, ‘I’he tutor observes all device state changes and it recognizes when each
of the plan’s disjunctive goals are achieved. Once the conjunction of all the plan’s goals are satisfied,
the plan is considered to be satisfied. Figure 8 shows some of the Configure-DSP plan’s goals.

Configure-DSP
Device Attribute Ex octod Value
~LOADED? YES
‘@ NFIGURATION-TABLE SYNTHESIZER-FREQ-R1 300.21
CONFIGURATION-TABLE SAT-VALUE 30
CONFIGURATION-TABLE RECORDER LDO
CONFIGURATION-TABLE OFST-VALUE 2.7

.‘3

Figure 8 Plan Goals for Configure-DSP

4.3 Impasse Recognition

‘l-he notion of an impasse is not new: it has been used in repair theory to help explain procedural errors
in subtraction [Brown and VanLehn, 1980] and as a motivation for subgoaling during problem solving
(e.g., the Soar architecture [Laird et al., 1987].) Our definition of an impasse is consistent with these
uses of the term: impasses are obstacles to successfully performing a procedure, where the obstacle is a
lack of knowledge or misconception about what to do next in a task situation.

The impasses recognized by our tutor fall into three categories: action-constraint violations, goal fail-
ure, and plan dependency violations. Impasses in the first category, acfion-consfrairzf violations, arc
usually easy to mcognizc, both by the student and the tutor, because the device simulator gives an indi-
cation when a system constraint has been violated. Impasses in the other two categories are different
from the action-consirainf violations in that they arc pofenfial rather than actual impasses, They do
not bccornc actual impasses until the student notices that there is a problem, which may not be for a sig-
nificant amount of time in these instances. Since we wish the tutor to intervene as near to the comn~is-
sion of an error as possible, the tutor forces an impasse when it detects a goal failure or plan dependency
violation.

One of the significant aspects of our approach is that it does not attempt to recognize the mental state
that led to the impasw. Instead, it depends on the device to detect many of the action constraint viola-
tions, while it uses it knowledge about plans, goals and the situation to detect the other impasses. In
this section we will describe how the tutor recognizes impasses of each type.

4.3.1 Action Constraint Violations

I“he tutor recognizes action consirainf violations by watching the communications link simulator.
Examples of this type of impasse are shown in Figure 3: the NLOAD command was rejected in Case 2
because the NCB-progran~ was in the wrong mode. In addition, Case 2 also shows the NLOAD directive
subsequently being rejected becauw the parameter, MK, specified a non-existent predict wt. The sin~u-
lator is a faithful representation of the link monitor and control system: it re@ts commands when sys-
tem constraints are violated. These constraints constitute a subset of the operator prmonditions.

%mctirnes a rejection message provides a brief message of explanation with the rejmtion, but it never
provides a rncans of working around the precondition failure. when the tutor observes that the com-

mand was rejected, it uses this fact to trigger its cognitive model, which determines the reason for the
rejection and finds a way of resolving the impasse. The impasse explication process will be di&ussed in
mom detail in the next section, but it worth noting that the simulator recognims the rejection conditions
for the input commands and generates the appropriate rejection message. The tutor reads the same re-
jection message that the student receives, and it determines the reasons for the rejection without con-
sulting the internal mechanisms of the simulator. Thus, recognizing this type of impasse does not de:
penal on a detailed cognitive model of the student or of the student’s plans. Rather, it depends on the
simuiator to reject inappropriate actions, removing some of the burden of impasse recognition from the
tutor and placing it on the simulator. At the same time it does not plact the burden of impasse diagnosis
and recovery on the simulator, which only needs to mcognim whether an action can be taken given the
current state of the devices being simulated.

4.3.2 Goal Failure

The idea behind a goal /ailure itnpusse is that students may rotely follow a procedure without under-
standing the goals associated with it. A goal failure violation occurs when the student completes a
plan (i.e., all of the expected actions have been observed for an active plan) but does not satisfy the
plan’s goals prior to beginning a successor plan, This type of error may not manifest itwlf in an obvious
form, such as with a directive rejection, therefore, a student may not recognize the impasse in~medi-
ately. Instead, a goal failure impasse would likely show up later as another type of impasse in a sub-
sequent procedure. Allowed to pass without tutorial intervention, a goal failure impasse could be very
difficult for the tutor to diagnose and resolve since the original context of the impasse may have been
lost. Our intuition is that it is better to deal with these types of errors as they are recognimd by the tu-
tor rather than wait until it becomes an actual impasse at the action or task goal level (i.e., task fail-
ure).

Goal failure impasses are recognized using the expectations about actions, plans and goals, generated by
situated plan attribution. The tutor is initially cued to this type of impasse when the student takes an
action belonging to an inactive plan. If the inactive plan is a successor of an active plan that is com-
plete but whose goals are not satisfied, then the tutor flags the action as a goal failure impasse, which
triggers the tutor’s cognitive model to diagnose and recover from the impasse in the current situation.

Case 1 in Figure 3 gives an example of a goal failure impasse. The Configure-DSp plan is assumed to be
active during this trace. The student issued the SAT 25, which noted earlier should have been SAT 30,
so we know that the goal associated with setting the SAT value properly was never satisfied. The
Operator issued all of the other Configure-DSP commands (let’s assume that the OFST command was
properly issued) and moved on to the Coherence-Test plan, which begins with the V NI’CG MAN corn-
mand. The tutor notes that all of the expected commands from Con figure-DSP have been issued and
marks the plan COMPLETE. At the same time, it knows that the plan’s goals are not satisfied, so it
marks the plan UNSATISFIED. Once it observes the NI’CG command, it notes that this command be-
longs to an inactive plan that follows the still active, albeit unsatisfied Configure-DSP plan. The tutor
recognizes this situation as a goal failure impasse and decides to intervene. This is a case where the
student’s error was a result of mis-parameterizing the directive, which can only be detected as a goal
failure since it does not violate any action constraints, hence it is detected after the student is appar-
ently finished executing the plan.

4.3.3 l’lan Dependency Violations

‘l”he reason for classifying certain behaviors as plan dependency violations is to aid the student who is
confused about which plans are applicable for a given situation. The TDN describes the precedence con-
straints among plans. Thus, if the tutor observes the student executing a plan that is clearly inappro-
priate for the situation, it will intervene with tutorial advice. For example, consider once again Case 1
in Figure 3. l’he student omitted the OFST command and issued the NPCG MAN command, instead.
The tutor matches this action with Coherence-1’est plan, which is inactive. Clearly, this action was
taken at the wrong time. This is a case where the tutor treats the command as a plan dependency in~-

passe since resolving the error entails doing the Configure-DSI’ plan and it is not necessary to have the
cognitive mock] figure this out when it is clearly a violation of the TDN constraints.

Due to the situated nature of tasks in this domain, however, the tutor does not automatically assume a
command that does not match an active plan is a TDN constraint violation. The tutor evaluates the
command with respect to the command preconditions of and plan goals of active plans. If it appears
that the student was attempting to correct an anomaly or an unsatisfied prcxondition, then the tutor
does not intervene. A good example of this is found in Case 3 of Figure 3. In this instance, the student is-
sued the NIDLE REC command at the beginning of the sequence. The tutor recognizes that this command
does not belong to the Configure-DSI> plan, which is currently active, but that it does satisfy one of the
NLOAD preconditions (i.e., it puts the NC13-program into, the IDLE mode.) Consequently, the tutor
does not intervene because the command clearly wrved a purpose for the current situation and the
Operator was able to avoid a rejection of the NLOAD command.

This is the weakest category of impasse because it is the most difficult to correctly recognize. It requires
being able to understand actions that do not fit into an expected behavior. Our next extension to the tu-
tor will be to recognim and use severe device anomalies or failures to drive the model of expectation
and situated plan attribution. The current effort focuses more on normal operations where the range of
anomalies can be accommodated by fairly simple reactive plans or knowledge.

5. Impasse Explication

Once an impasse is recognized, the next step is to decide what to say to the student about it. The process
of determining what to say is called impasw explication, which has two basic goals: first, explain the
nature of the impasse in the context of the current situation, and second, determine how to resolve the
impasse so that the tutor can teach the operator the actions required by the situation. Our method for
generating explanations for action constraint violations and goal failure impasses uses an executable
expert cognitive model of the domain. The model is sensitive to the state of the devices at the point of
the impasse; it reactively performs the task, identifies and repairs unsatisfied preconditions while
concurrently generating an explanation for the student. Plan failure impasses are treated somewhat
differently. Errors of this type do not require a detailed account of how to solve the problem, rather,
we consider them to involve mis-executing a default plan.

5.1 Action Constraint Violations

The strategy for generating an explanation for an action constraint violation begins by applying the ex-
pert cognitive model at the impasse point; the explanation is constructed as the cognitive model re-
solves the impasse. We assume that the impasse was caused by a precondition violation that was over-
looked by the student. The reason for the oversight could be due to not knowing the precondition, hav-
ing a misconception about it, or not attending closely enough to the situation, which may have unex-
pectedly changed. In any of these cases, our cognitive modeling work (dexribed in section 3) predicts
that the impasse is a strategic intervention point and that the tutorial content is crucial to helping the
student acquire the new skill.

T}~e tutorial content is constructed by first recognizing the situational factors that led to the impasse
and then reasoning about the steps necessary to resolve it. The tutor does not simply solve the problem
at the impasse point; rather, it internally simulates applying the operator associated with the stu-
dent’s command. The student’s command will normally have one or more parameter values (e.g., the
NLOAD command requires a parameter value specifying the predicts set, such as JK). The tutor binds
the student’s command parameter value(s) to the operator precondition variables and proceeds with
the task of attempting to apply the operator.

Figure 9 shows a portion of the problem space hierarchy that the Soar-based tutor searches in order to
apply the Load-Predicts operator. Each of the preconditions is evaluated in the Verify-Operator-
l’reconditions problem space. If a precondition is not satisfied, the tutor searches the Repair-

,,.

Unsatisfied-Precondition problem space for a way to resolve the impasse created by the unsatisfied
precondition. Explanations arc generated in both of these problem spaces when there is an un.satisfied
precondition, detailing the source and nature of the problem and how to resolve it. Sometimes the un-
satisfied precondition can be repaired by merely changing the command parameter, while in other
cases it may be necessary to select and apply one or more command operators that will change the state
of the device that caused the original precondition to be unsatisfied. The tutor internally simulates
applying the commands to the devices, and includes thew command applications in its explanation to
the student.

I
Verify-Operator- Repair-Uneatlsf ied- NLOAD JK Verlfy-Oporator-

1

“ t i-

1Attend-to-Uneatlsf led-
Precondltlons Precondition Postcondltlons Postcondftlon

Opcwator-x
a

Device

Internal Simulation

Figure 9 Problem Space Hierarchy of Expert Cognitive Model

To illustrate the explication process we have just summarimd, let us return to one of the previous exam-
pies, shown as Ca& 2 in Figure 3. In this example the student issues the command, V NLOAD JK, and it
is rejected, i.e., the simulator issues a message saying, REJECTED. NOT ALLOWED IN NRUN MC)DE.
This interaction is observed by the tutor, and it recognizes the rejection as an action constraint viola-
tion. Knowing that the NLOAD command is associated with the Load-Predicts operator, the tutor se-
lects this operator and subgoals into the Load-Predicts problem space.

As previously described, once the Soar-based tutor is in the Load-I’redicts problem space, it selects an
operator called Verify -Operator-l’reconditions which creates another subgoal into the problem space
for this operator. In the Verify-Operator-Preconditions space each of the Load-Predicts operator’s pre-
conditions (shown in Figure 5) is evaluated with respect to the current situation (i.e., with respect to
the state of devices such as those shown in Figure 4.) In this particular case, the precondition named
Load-Predicts-PCl is unsatisfied because the NCB-Program device is in the RUN mode instead of the
IDLE mode. Once detected, the tutor adds the information about the unsatisfied precondition to the ex-
planation for the impasse (see Figure 10.1.)

Impasse Explanation
Device I Attribute I Expected Value [Actual Value

NCB-Program] MODE I IDLE I RUN

Figure 10.1 Explanation of why the NLOAD command failed

Impasse Resolution
Issue Cammand: Affected Device I Affected Attribute I Valuo ,
NIDLE REC NCB-PROGRAM MOD~— IDLE
NLOAD JK VLBI-PREDICTS LOADED? YES

CON FIG-TABLE NCOMB 100.0

I . . .
} 0n’’ClG-TAt3LE

‘ ,.ypE “““ 1
jm ““” 1

Figure 10.2 Explanation of how to resolve the impasse

,..

The tutor must now find a way of satisfying the Load-Predicts-PCl precondition, so it selects another
operator in the Load-Predicts problem space called Repair-Unsatisfied-Preconditions. Again, the
Soar-based tutor subgoals into a problem space for this operator, where it searches for a command oper-
ator that will change the NCB-Program from the RUN mode to the IDLE mode. The tutor finds an op-
erator called Idle-NCB-Progran~ which when applied will have the desired effects on the NCB-
Program device. The tutor selects the Idle-NCELProgram operator and subgoals into a problem space
that contains the same kinds of operators as the Load-Predicts problem space shown in Figure 9, and
the process of verifying preconditions for the Idle-NCB-Program is performed. Given that the precon-
ditions for this operator are satisfied, the Soar-based tutor internally simulates issuing the Idle-NCB-
Program operator’s command, NIDLE REC, and changes its internal model of the NCB-Program device
mode from RUN to IDLE. The NIDLE REC command is added to the explanation as shown in Figure
10.2.

Once this is accomplished, the Idle-NCB-Program subgoal terminates, and the tutor continues its prob-
lem solving in the Load-Predicts problem space. It begins by r-e-evaluating the previously unsatisfiti
Load-Predicts-PCl precondition with respect to the revised device model. Since this precondition is
now satisfied (and assuming that all of the other preconditions are also satisfied), the tutor applies
the NLOAD command to its internal device model. This command is also added to the explanation for
resolving the impzsse (see Figure 10.2). The tutor terminates the Load-Predicts operator once it verifies
that all of the postconditions have been satisfied, and the explanation is complete.

According to our model of skill acquisition [Hill and Johnson, 19931, the information contained in the
explanation is precisely what the student should learn about the situational constraints of the failed
command in order to avoid the same impas.w in the future. In our modeling work, this new knowledge is
initially acquired declaratively, and it is chunked into the form of a procedural skill as the student
applies it in a problem solving context. The proceduralimtion of skill in the model is a direct result of
the Soar architecture’s learning capability provided by the chunking mechanism [Rosenbloom and
Newell, 1986; Laird et al., 1987]. Moreover, our model of skill acquisition closely resembles the account
given by Anderson [Anderson, 1983; Anderson, 1989; Anderson et al., 1990].

5.2 Goal Failure Impasse

Goal failure impasses arc handled in much the same manner as action constraint violations; the pri-
mary difference is the level at which the tutor enters the expert cognitive model’s problem space hier-
archy. Instead of selecting a command operator, which was the case in example described in the last
section, the tutor selects the plan-level operator (see Figure 1) corresponding to the plan whose goals
were not satisfied. The tutor’s goal in the plan operator’s problem space is to select and apply command
operators that will satisfy the plan’s failed goals.

Plan:

F

Commands: Load-Predicts Select-Recorder

v I, 1

I

Verify-Operator- Repair-Unaatlsf led- sA-r 30

‘1’h’

Verify-Operator- 1ttend-t~lkmatlsf iod-
Preconditlons Precondition Postcondltions Postconditlon

Operator-x Dovica

Internal Simulation

Figure 11 Resolving a goai failure impasse related to the S-band attenuation (SAT) level setting.

,.

A simple example of how the tutor explicates a goal failure impasse is shown in Figure 11. After the
student finished the Configure-DSP plan, the tutor notices that the S-Band Attenuation (SAT) value
was incorrect y set. The tutor subgoals into the Configure-DSP plan problem spare and resolves the im-
passe by selecting and applying the Set-SAT-Value operator; this is a simple case where it was only
necessary to correct one command of the Configure-DSP plan. One can imagine instances, however,
where the plan’s unsatisfied goals are not corrmted so easily. In such cases, the tutor will search for
and apply command operators in the plan’s problem space until all of the goals arc satisfied, and the
explanation will reflect all of the commands that it selected to satisfy the goals.

53 Plan Failure Violations

This type of error appears to originate from a plan-level misconception or knowledge gap rather than
at the command level. Either the student does not know which plan appIies in the current situation or
else does not know the plan’s commands. Consequently, the tutor explains plan failure violations in
terms of the plans that should be active in the current situation. The active plan’s command operators
are taught, but the details about their preconditions are omitted. In this way the student first becomes,
familiar with the default plan and its commands without being overwhelmed by the situational de-
tails of applying the commands.

6. The Tutor Improves over Time

The tutor was implemented to take advantage of Soar’s learning capability. The Soar architecture em-
bodies the idea that problem solving is a goal-oriented activity involving the search for and applica-
tion of operators to a state in order to attain some desired results [Laird et al., 1987]. Search takes place
in a hierarchy of problem spaces, where a problem space contains a set of operators and an initial state.
The problem space hierarchy is traversed via subgoaling, which takes place whenever the problem
solver cannot make any more progress toward a goal in the current problem space. Learning occurs when
a subgoal yields a result; the result is stored in a production that summarizes the conditions for subgoal-
ing and the result of the problem space search [Rosenbloom and Newell, 1986]. The chunk can be ap-
plied the next time a similar situation arises and the same results can be achieved without searching a
subgoal problem space.

There are two consequences of having a tutor that learns: (1) the t utor’s performance improves with ex-
perience, and (2) the nature of the tutor’s problem solving changes as it learns. The first consequence has
a bearing on the efficiency of the implementation, As the tutor gains experience with different student
impasses, the knowledge of how to recognize and explicate these impasses is chunked into new produc-
tions. The chunks improve the tutor’s performance significantly, since they limit the amount of search
that is required to solve a familiar problem again. The second consequence affects the way we charac-
terize our approach to tutonn& since the tutor’s knowledge becomes more procedural as it gains experi-
ence

6.1 Impasse Recognition Chunks

To illustrate how the tutor learns to recognize impasses, consider what happens when the tutor sees an
action-response pair (i.e., a student command and device response); it subgoals into a problem space
called Analyze- Action-Respmse, where it searches for a plan that contains the student’s command.
When the tutor finds a match, it marks the command in the plan as “matched”. The tutor then decides
whether there is a potential impasse, depending on whether the plan containing the command was ac-
tive or not and whether the command was accepted or rejected by the device. Two types of potential
impasses are identified in this problem space: plandependency-violation and action-constraint-viola-
tion. The Analyze-Action-Response problcm space terminates once the tutor finishes analyzing the ac-
tion-response pair.

The chunks built while searching in the Am~lyze-Action-Response problem space automatically recog-
nize whether a specific action-response pair is a potential impasst for a given situation. I Ience, the

next time that the action-response pair is observed, the tutor will recognize whether there is a poten-
tial impasse or not without any further subgoaling or search.

6.2 Impasse Explication Chunks

Chunks arc also built while the expert cognitive model explicates an impasse, Once the tutor has re-
solved a particular impasse, the resulting explication chunks arc general enough to solve the same
problem again even though the parameter values may be different, In addition, there is a transfcv of
knowhxigc about how to perform tasks such as verifying preconditions and postconditions, so as new im-
passes arise some of the previously learned chunks will be applied,

63 Improvement

There is a significant improvement in the tutor’s performance after it has chunked the problem space
hierarchies used to recognize and explicate student impasses. Figure 12 shows the amount of time it
takes the tutor to handle action constraint violations for the NLOAD and SAT commands before and
after learning.

Recognize Explicate Total Ratio: Before/After
Command Impasse Impasse (Total)

Before After Before After Before I After
NLOAD 0.20 0.08 8.70 0.61 8.90 0.69 13::1
SAT 0,19 0.08 2.70 0.32 2.92 I 0,40 7::1 A

Figure 12 Tutor’s performance on action constraint impasse before and after learning, measured in
seconds

Note that the time it takes to recognim the impasse is constant among these commands, before and after
lcarninw it takes roughly 0.20 seconds to recognize an impasse involving either command before learn-
in~ and it improves to 0.08 seconds after learning. On the other hand, the amount of time it takes to ex-
plicate an action constraint violation varies, depending on how many preconditions and postconditions
must be checked for the command. We chose the NLOAD and SAT commands for this example because
they provide upper and lower bounds for this type of impasse. l%c NLOAD command has the greatest
numkr of preconditions and postconditions and the SAT command has the fewest.

7. Comparison to Model Tracing and Plan Recognition Approaches

We compare our tutoring method to two approaches that have been used in a number of intelligent tu,tor-
ing systems, namely, mcylel tracing [Anderson, 1990; Reiser et al., 1985; Ward, 1991] and plan recogni-
tion [Johnson, 1990; Warriner, 1989; Rickcl, 19881. Our tutor rescmb]cs elements of both model tracing
and plan recognition, though it cannot be completely characterized as one or the other according to cur-
rent definitions. In fact, we would suggest that the current conception of model tracing should be ex-
tended to allow for model tracing at different levels of abstraction. To clarify what this means, con-
sider how model tracing and plan recognition address the tutoring intervention problem.

7.1 The Intervention Decision

Model tracing recognizes errors using an executable performance model of the student to search for pro-
duction rule paths that account for the student’s behavior. If an action can only be accounted for via a
mal-rule application, then the tutor concludes that the student made an error and passes this interpre-
tation to the pedagogical model [Anderson et al., 1990]. This differs from our approach in that our tutor
does not detect errors by running a cognitive simulation of the student. Rather, our tutor focuses on recog-
nizing impasses, and more closely resembles plan recognition than model tracing when deciding
whether to intervene.

Whereas model tracing uses procedural knowledge to detect student errors, plan r~ognition approaches
to student analysis typically match the observed behavior to a declarative description of action. This
either involves matching and interpreting the student’s action sequence using a library of plans
[Johnson, 1990; Calistri, 19901, or else interpreting the action with an action grammar or procedure net
description of the task [Burton, 1982; Rickel, 1988; Warriner et al., 1990]. In a plan matching approach,
errors are detected with real-plans or difference rules, while in the action grammar case an error is any
action that can’t be parsed by the grammar, or which is only parsed with a model that includes buggy
rules. Our method of impasse recognition bears ~me rewmblance to these approaches in that the tutor
initially matches student actions to declarative plan descriptions and recognizes potential impasses
when actions do not fit the expectations generated by the plans and their goals. It differs in that the
tutor does not use manually encoded real-plans or difference rules to recognize the impasse; as the tutor
gains experience it effectively generates its own real-plan rules in the form of recognition chunks.
Hence, our tutor learns when to intervene. At an abstract level it traces a performance model, but the
difference from standard model tracing is that it does not attempt to generate mental states to do so. It
traces the student’s progress in enough detail to make predictions of what plans the student might be
following, and no more.

7.2 Deciding What to Say

One of the strengths of the model tracing is its ability to give a reasoned explanation for an error, once
it is detected. In this regard, our tutor resembles a model tracer; it generates explanations using an exe-
cutable cognitive model that diagnoses possible cauws for the error and suggests how to resolve the cur-
rent impasse. The difference between the two approaches is that model tracing relies partly on its
knowledge of real-rules to generate the explanation, while our tutor learns to recognize the causes for
errors while applying an ideal perforrnanm model to the impasse. The declarative reprewntations of
opmator preconditions used by the cognitive model end up being proceduralized, to a large extent, as the
tutor gains experience. These chunks have the same effect as a real-rule in that they can be used to ex-
plicate an impasse.

7.3 Generality of the Approach

The simplicity of our approach is partly due to the constrained nature of the task being tutored. We as-
sume at the outset that the mission that the student is performing is known. This allows us to make
predictions of what plans the students am likely to be following. All model tracing and most plan
recognition systems make similar assumptions.

I lowever, it should be possible to weaken this assumption and retain the same basic approach. Device
failures and anomalies can lead the Operator to carry out different or additional plans. Operators
sometim6s get confused about which plans arc appropriate for which missions, and carry out inappro-
priate plans. These cases can simply be treated as alternative sources of expectations for plans.
Tutorial intervention will continue to focus on the appropriateness of attributed plans to the situation
at hand.

8. Results

We have made a number of claims about how students learn, and based on this, how an intelligent tutor
can effectively teach in a monitor and control domain. In order to assess the veracity of these claims,
we plan to evaluate the tutoring systcm in two ways: first, by testing it with novice operators, and sec-
ond, by soliciting the reactions of expert operators and system engineers to the method and accuracy of
the advim given by the tutor.

The tests involving novice operators will divide the participants into two groups: a control group and a
test group. Both groups will be given identical tasks to perform on the link monitor and control training
simulator, and the simulator dcviccs will also start in the same state for both groups. l“he primary dif-
ferenm between the two groups will be that the test group will receive advice from the tutor, while the

control group will not. We will measure the task performance of each group over a number of trials on
the same task; data will be collected on how the student performed on each trial in terms of (1) time
elapsed, (2) number of commands needed to complete the task, and (3) the number of impasses or errors
committal. This data will help us make a formative evaluation of how helpful the tutor is with re-
spect to just using the simulator.

9. Conclusions

We have introduced a new approach to tutoring that focuses on recognizing student impasses through
the use of situatmi plan attribution. Unlike plan recognition, we assume that behavior is situated
rather than plan-based and therefore cannot necessarily be recognized as plans. Plans serve as resources
for action which must ultimately b situated in the world. Likewise, we do not attempt to understand
every student action as is the case with both model tracing and plan recognition. Instead, our tutor fo-
cuses on recognizing impasse situation% From the tutor’s pmqxctive, the task of recognizing certain im-
passes is simplified by listening to the device (i.e., directive rejections) rather than trying to genera-
tively recognize the action as an error. Once an impasse is recognized, our expert cognitive model expli-
cates the situation at the impasse point, thereby incorporating one of the strengths of model tracing.

10. References

[Anderson, 1983] John R Anderson. The architecture of cognition. Harvard University Press, 1983.

[Anderson, 1988] John R. Anderson. “The Expert Module”. Foundations of Intelligent Tutoring Systems,
edited by Martha C. Poison and J. Jeffrey Richardson. Lawrence Erlbaum Associates, Inc, 1988.

[Anderson, 1989] John R. Anderson, “Use of analogy in a production system architecture,” in Similarity
and Analogical Reasoning, edited by Stella Vosniadou and Andrew Ortony. Cambridge University
Press, New York, 1989.

[Anderson et al., 1990] John R. Anderson, C. Franklin Boyle, Albert T. Corbctt and Matthew W. Lewis.
“Cognitive modeling and intelligent tutoring,” Artificial lntclligence, 42, pp 7-49, 1990.

[Brown and VanLehn, 1980] John Seely Brown and Kurt VanL,ehn. “Repair theory: a generative theory
of bugs in procedural skills,” Cognitive Science (4), pp. 379-426,1980.

[Burton r 1982] Richard R. Burton. “Diagnosing bugs in a simple procedural skill,” Intelligent Tutoring
Systems, edited by D. Sleeman and J.S. Brown. Academic Press, Inc., 1982.

[Calistri, 1990] Randall J. Calistri. “Classifying and detecting plan-based misconceptions for robust
plan recognition.” Ph.D. Dissertation, Technical Report No. CS-90-11, Department of Computer
Science, Brown University.
[Chen et al., 1991] Thomas T. Chcn and Diann Barbce, “Integrating an intelligent tutoring system with
an existing simulator, ” Proceeding of the 1991 Conference on Intelligent Computer-Aided Training,
NASA/Johnson Space Center, Houston, Texas, November 20-22,1991.

[Fayyad and Cooper, 1992] Kristina Fayyad and Lynne Cooper, “Representing Operations Procedures
Using Temporal Dependency Networks,” Proceedings of the Second international Symposium on Ground
Data Systems for Space Mission Operations, SPACEOPS-92, Pasadena, CA, 16-20 November, 1992,

[Galdcs, 1990] Deborah K. Galdcs. An empirical study of human tutors: the implications for intelligent
tutoring systcrns. Ph.D. Dissertation, The Ohio State University, 1990. Order Number 9031068, [JMI
Dissertation Services, Ann Arbor, Michigan.

“ ,“

[1 lill and Johnson, 1992] Randall W. Hill, Jr. and W. Lewis Johnson. “Designing an intelligent tutoring
system based on a reactive model of skill acquisition,” World Conference on Artificial Intelligence in
Education (AI-ED 93), Edinburgh, Scotland, 1993.

[Hill and Lee, 19921 Randall W. Hill, Jr. and Lorrine Lee, “Situation Management in the Link Monitor
and Control Operator Assistant,” Proceedings of the Second International Symposium on Ground Data
Systems for Space Mission Operations, SPACEOPS92, Pasadena, CA, l&20 November, 1992.

[Johnson, 1990] W. Lewis Johnson. Understanding and Debugging Novice Programs. Artificial
lntclligcnce, 42, pp. 51-97, 1990.

[Laird et al., 1987] John E. Laird, Allen Newell and Paul S. Rosenbloom. “Soar: An architecture for gen-
eral intelligence,” Artificial Intelligence, 33(3), 1987.

[Newell, 1990] Allen Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[Reiser et al., 1985] Brian J. Reiser, John R. Anderson and Robert G. Farrell. “Dynamic student modelling
in an intelligent tutor for lisp programntin&” Proceedings of IJCAI-85, Los Angeles, CA, 1985.

[Rickel, 1988] Jeff RickeL “An intelligent tutoring framework for task-oriented domains,” Proceedings of
the International Conference on Intelligent Tutoring Systems, Montreal, June 1-3, 1988.

[Rosenbloom and Newell, 1986] Paul S. Rosenbloom and Allen Newell. “The chunking of goal hierar-
chies a generalize model of practice,” Machine Learnin& Volume II, pp. 247-288, edited by Rysmrd
S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1986.

[Suchman, 1987] Lucy A. Suchman. Plans and situated actions. Cambridge University Press, New York,
1987.

[Ward, 1991] Blake Ward. E’I’-Soar: Toward an ITS for Theory-Based Representations. I’h.D.
Dissertation, CMU-CS-91-146, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA.

[Warinner et al., 1990] Andrew Warinner, Diann Barbee, Larry Brandt, Tom Chen, and John Maguire.
“Building an intelligent tutoring system for procedural domains,” Proceedings of the First CLIPS
Conference, pages 881-892, NASA/Johnson Space Center, Houston, TX, 1990.

11. Acknowledgements

The research described in this paper was carried out by the Jet Propulsion bboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Dr. Johnson was supported in part by the Advanced Research Projects Agency under contract number
NOO013-92-K-2015. Views and conclusions contained in this paper are the authors’ and should not be in-
terpretcxl as representing the official opinion or policy of the U.S. Government or any agency thereof.

We thank Paul Rosenbkm-n and the members of the Soar group at USC-ISI for their helpful comments
on this paper. We also thank Lynne Cooper, Lorrine Lee and members of the Link Monitor and Control
Operator Assistant team at JPL for their helpful input.

